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Analysis of Lung Cancer Patient Treatment with Immune Checkpoint Inhibitors Using Natural Language
Processing for Data Extraction from Electronic Health Records

Background: Immune checkpoint inhibitors (ICls) revolutionized the treatment landscape for lung cancer,
displaying significant survival benefits in numerous clinical trials. However, understanding real-world
treatment patterns and outcomes of lung cancer patients receiving ICls remains crucial for optimizing
patient care. To address this gap, we conducted a multicenter study to gain novel insights into the
utilization of ICls in lung cancer patients.

Result 1: In a cohort of 730 lung cancer patients, Result 2: Most patients had a performance
the median age was 67 years and 67/% were males. status (PS) = 1. A higher PS was associated with
Most patients were current smokers, had metastatic a decreased overall survival probability.
disease, and were treated with pembrolizumab.
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Methods
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Conclusion: Autonomously extracting data from Oncology EHRs and validating OMOP-CDM
hospital databases is feasible, enabling access to real-world data on lung cancer patients
receiving ICl therapy. This approach provides insights into demographics, disease
characteristics, and overall survival. Future analyses will shed light on immune-related adverse
events, comorbidities, tumor stage, pathology, and treatment lines. OHDSI
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