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BACKGROUND & AIMS

* Cancer stage is critical for oncology RWE but is often
missing/inconsistent in EHRs.

* Heterogeneous recording across sites/tumor types limits
comparability and reproducibility.

* Mapping to OMOP CDM enables harmonized inputs from structured
fields and NLP-extracted text.

METHODS

* Population: n=3,231 cancer patients initiating IClI
(2017-2024) at 4 Belgian hospitals.

Aims:
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* Develop and validate an automated, rule-based cancer stage classifier covering
>20 cancer types.

* Integrate structured TNM and NLP-derived evidence to maximize completeness.

* Encode UICC 8th edition staging per cancer type with pathological > clinical
precedence and inference from partial TNM data sources.
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* Missing data-tolerant TNM: stage resolves with
iIncomplete T/N/M when the missing part does not affect
staging (e.g., any T, N3MO = Stage lll in breast cancer).
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Figure 1. Staging of the ICI-treated population Figure 2. Data sources to derive staging
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Figure 3. Truncated TNM availability and distribution (dashboard view). Counts for clinical (cT,
cN, cM) and pathological (pT, pN, pM) components, plus source-unspecified T/N/M. Categories

are truncated to 0—4 with an unknown category. Bars show patient counts.
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Figure 4. Stage distributions at two time points (dashboard view). Pie charts showing the
proportion of stage |-V and unknown for (left) stage at diagnosis and (right) stage at ICI initiation.
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Classifier governance

NLP staging.

* Diagnosis stage:

Priority: Metastasis > Structured staging >

* Metastasis <60 d post-diagnosis or before.
 Else: Structured staging > NLP staging.

Stage at ICl initiation:
e Metastasis pre-ICl initiation.

* Else: highest stage from structured staging, NLP

staging within =120 to +60 d of ICl initiation.

Metastasis from structured _ 1630, —
. 0
sources * Metastasis <60 d post-ICl initiation.

Traceability: Each stage assignment retains

provenance tags (structured/NLP/mixed;

inferred vs explicit).

CONCLUSIONS
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* Ascalable, interpretable classifier can standardize stage

assignment across >20 cancers.

* Combining structured + NLP-derived inputs within OMOP
CDM markedly improves completeness and

reproducibility.

* Code and logic rules will be made publicly available,

supporting reuse across sites.

Implications:

* Facilitates harmonized staging for federated networks

and multi-center RWE.

* Reduces bias from missing/incomplete TNM and

enhances study generalizability.
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